Wednesday, July 20, 2011

Group Assignment - Topic 1- Force on Materials

Question 3

Satu tolok keluli lembut dikenakan ujian tegangan sehingga putus. Data-data ujian adalah seperti dibawah:

Garispusat awal       =       15 mm
Panjang awal           =       45 mm
Garispusat akhir       =  12.40 mm
Panjang akhir           =  63.30 mm
Beban (kN)
0
20
40
60
80
Pemanjangan (mm)
0
0.36
0.069
0.099
0.150


a)    Dengan skala 1 cm = 0.01 mm pada paksi x dan 1 cm = 5kN pada paksi y, plotkan graf beban melawan pemanjangan bagi ujian tersebut.
b)      Menggunakan pengetahuan dai graf, kirakan nilai Modulus Young bahan tersebut.


Group Assignment - Topic 2- Thermal Stresses and Composite Bar

Group Assignment (Set 1)

Question 1
1.     Sebatang bar komposit panjangnya 90 cm terdiri daripada rod keluli sepanjang 30 cm dan bergarispusat 30 mm yang disambung tegar pada sebatang rod kuprum sepanjang 60 cm. Tarikan paksi sebanyak 50 kN menyebabkan pemanjangan kuprum 2 kali ganda pemanjangan yang berlaku pada keluli. Kirakan :
(i)                 garispusat kuprum
(ii)               tegasan dalam keluli
(iii)             tegasan dalam kuprum
( 41 mm , 70.74 MPa , 37.87 MPa )
Question 2
2.     Sebatang bar komposit 3 m panjang dibuat daripada 2 bahagian yang berlainan. Bahagian pertama ialah keluli 2 m panjang yang mempunyai keratan rentas berbentuk segiempat tepat. Bahagian kedua ialah rod kuprum 1 m panjang yang bergarispusat 10 mm. Jika tegasan yang dibenarkan dalam keluli ialah 140 MN/m2 dan dalam kuprum ialah 56 MN/m2, dan modulus young untuk keluli = 200 GPa dan untuk kuprum = 112 GPa. kirakan :
(i)                 beban tegangan maksima yang boleh dikenakan kepada bar
(ii)               luas keratan rentas keluli
(iii)             pemanjangan bar apabila beban maksima dikenakan
( 4.4 kN , 31 mm2 , 1.94 mm )
Question 3
3.     Tentukan tegasan dalam bar 1 dan 2 (rajah 2.1) apabila dikenakan daya tegangan  20 kN. Bar 1 mempunyai keratan rentas bulat berdiameter 20 mm manakala keratan rentas bar 2 ialah 30 mm segiempat sama. Kirakan juga pemanjangan yang berlaku. E = 210 GPa.
( 63.66 MPa , 22.22 MPa , 102 mm )










Group Assignment (Set 2)

Question 1
Satu rod keluli diletakkan di antara rod aluminium dan gangsa dan dikenakan beban seperti dalam rajah 2.2. Carikan nilai beban maksimum P jika tegasan tidak melebihi 80 MPa dalam aluminium, 150 MPa dalam keluli dan 100 MPa dalam gangsa.
( 15 kN )

Question 2
Satu bar bulat dikenakan daya mampatan sebanyak 150 kN seperti dalam rajah 2.3. Bahagian A dan C adalah sama panjang dan mempunyai garispusat 50 mm. Cari garispusat dan panjang bahagian B jika tegasan pada bahagian ini tidak melebihi 215 MPa dan pemanjangan jumlah bagi bar ABC ialah 0.2 mm. E = 200 GPa.
( 29.8 mm, 150.7 mm )

Question 3
Satu rod tembaga berukuran panjang 1 m, bergarispusat 20 mm diletakkan di antara dua dinding yang tegar. Kirakan tegasan mampatan yang berlaku selepas pertambahan suhu 300 C. Kirakan juga daya yang bertindak pada dinding. Etembaga = 107 GPa , pekali pengembangan lelurus = 17 x 10-6  /0 C
( 54.57 MN/m2 , 17.14 kN )












Group Assignment (Set 3)

Question 1
Dua bar bulat padu (yang berdiameter 25 mm setiap satu) di pasang antara dua dinding tegar seperti rajah 2.4. Tentukan tegasan yang berlaku dalam setiap bar jika suhu diturunkan sebanyak 500 C. Ekeluli = 200 GPa , akeluli = 12 x 10-6  /0C , Ekuprum = 112 GPa , akuprum = 17 x 10-6  /0C.
( 104.10 MN/m2 , 104.10 MN/m2 )

Question 2
Sebatang rod keluli seperti rajah 2.5 dikenakan daya tegangan 18 kN. Kirakan perubahan suhu yang diperlukan untuk mengurangkan daya tegangan ke 10 kN. Ekeluli = 200 GPa , akeluli = 12 x 10-6  /0C.
( 2.970 C )

Question 3
Sebatang bar majmuk terdiri daripada sekeping keluli yang diletakkan di antara dua keping aluminium. Luas keratan setiap kepingan ialah 450 mm2. Satu rivet bergarispusat 20 mm dipasang disetiap hujung bar seperti rajah 2.6. kirakan tegasan ricih dalam rivet sekiranya suhu dinaikkan sebanyak 500 C. Ekeluli = 200 GPa , akeluli = 12 x 10-6  /0C , Ealuminium = 73 GPa , aaluminium = 23 x 10-6  /0C.
( 33.26 MN/m2 )




Family Day Mechanical Engineering Department

Family Day Mechanical Engineering Department

Sunday, July 10, 2011

JJ308-Engineering Laboratory 2

PENSYARAH JJ308

DKM3A-
ZAID NOOR(FLUID)
ZAMRI(STRENGTH)
ZUHAIRI(THERMO)

DKM3B
ZAID NOOR(FLUID)
ROHANA(STRENGTH)
CHE ZUL(THERMO)


DKM3C
ZAMZURI(FLUID)
IZAIMAN(STRENGTH)
CHE ZUL(THERMO)

DPT3A
SHAMSUL WADI(FLUID)
ZALEHA(STRENGTH)
ROSLAINI

DPT3B
SHARIPUDDIN(FLUID)
AZIRAN(STRENGTH)
SHAZILA(THERMO)

DPT3C
HALIMAH(FLUID)
ZAMRI(STRENGTH)
ZUHAIRI(THERMO)



DISEDIAKAN OLEH:
HJ ZAMRI YUSOFF
PANATIA JJ308


FLUID MECHANICS
(00 : 08)
Conduct experiment on

physical properties of fluid,
calibration of pressure gauge,
bernoulli theorem
and flow measurement.

Determine the principles of good practice for measuring experimental data for each experiment.





THERMODYNAMICS 1
(00 : 08)
Conduct experiment on

perfect gas,
properties of pure substances,
first law of thermodynamics
and vapor and combined power cycle.

Determine the principles of good practice for measuring experimental data for each experiment.



STRENGTH OF MATERIALS.
(00 : 08)
Conduct experiment on

tensile test,
bending moment,
shearing force and torsion
and deflection.

Analyze each experimental data gathered from each experiment.



JJ308 – ENGINEERING LABORATORY 2



FLUID MECHANICS
THERMODYNAMICS 1
STRENGTH OF MATERIALS
KURSUS
DKM3A, 3B, 3C / DPT3A, 3B, 3C
KUMPULAN A
10/07/11
Hingga
11/08/11
14/08/11
Hingga
22/09/11
25/09/11
Hingga
27/10/11
KUMPULAN B
25/09/11
Hingga
27/10/11
10/07/11
Hingga
11/08/11
14/08/11
Hingga
22/09/11
KUMPULAN C
14/08/11
Hingga
22/09/11
25/09/11
Hingga
27/10/11
10/07/11
Hingga
11/08/11









Lecture Notes and Guides-JJ310-Strength of Materials

LECTURE 1
DATE:11/7/2010
TIME:8-10 PG/E16
TOPIC: 1.0  FORCES ON MATERIALS
1.1.1 Explain the effects of forces on materials.
a. static
b. dynamic
c. impact
d. fatigue and alternating loads
1.1.2 Differentiate between tensional forces, compression and shear forces.
1.1.3 Define
a. tensile stress and compressive stress.
b. tensile strain and compressive strain.
                       c. modulus of elasticity (Young’s modulus).






TUTORIAL 1
DATE:14/7/2011
TIME:10-11PG/BJM3




LECTURE 2
DATE:18/7/2011
TIME: 8-10 PG/E16
TOPIC: 1.0  FORCES ON MATERIALS
1.2.2  Sketch the general shape of stress versus strain to common engineering materials which is elastic and brittle when subjected to load in the tensile test. Label the points of ;
a. Ratio limit
b. Elasticity limit
c. Yield point
d. Maximum tension strength
1.2.3  Define
a. the percentage of elongation and area reduction
b. working stress.
c. proof stress.
d. factor of safety.
                           e. Poisson’s ratio

1.3.1  Differentiate between single shear and double shear.
1.3.2  Define modulus of rigidity.
1.3.3  Solve problem on forces on materials, Hooke’ Laws, shear stress and shear strain.

TUTORIAL 2
DATE:21/7/2011
TIME: 10-11PG/BJM3



LECTURE 3
DATE:25/7/2011
TIME: 8-10 PG/E16
TOPIC: 2.0 THERMAL STRESSES AND COMPOSITE BARS
2.1.1 Explain the effects of temperature changes on composite bar.
2.1.2 Define the coefficient of linear expansion.
2.1.3 Calculate internal stresses developed in the material subjected to temperature changes.

2.2.1 Calculate
a. Series composite bars
b. Parallel composite bars









TUTORIAL 3
DATE:28/7/2011
TIME: 10-11PG/BJM3


LECTURE 4
DATE:31/7/2011
TIME: 8-10 PG/E16
TOPIC: 2.0 THERMAL STRESSES AND COMPOSITE BARS
2.2.2  Calculate the stress in the composite bar components which is subjected to external load.
2.2.3  Calculate stresses in composite bar due to temperature changes.














TUTORIAL 4
DATE:4/8/2011
TIME: 10-11PG/BJM3


LECTURE 5
DATE:7/8/2011
TIME: 8-10 PG/E16
TOPIC: 2.0 THERMAL STRESSES AND COMPOSITE BARS

2.2.4  Calculate stresses in composite bar components which are subjected to both external load and load due to temperature changes.
2.2.5  Solve problem regarding thermal stresses and composite bars.












TUTORIAL 5
DATE:11/8/2011
TIME: 10-11PG/BJM3



LECTURE 6
DATE:14/8/2011
TIME: 8-10 PG/E16
TOPIC: 3.0 SHEAR FORCES AND BENDING MOMENTS
3.1  Understand the types of beams
3.1.1 Explain the types of beams a. simply supported beam. b. cantilever beam.
3.2  Understand the types of beam load
3.2.1 Explain the types of beam load
a. point or concentrated load
 b. uniformly distributed load
 c. couples
3.3  Understand the laws of equilibrium
3.3.1  Use the laws of equilibrium equation to determine the reaction force for the simply supported beam and cantilever beam acted upon by coplanar forces.
3.3.2  Explain shear force and symbol for shear force.






TUTORIAL 6
DATE:18/8/2011
TIME: 10-11PG/BJM3

LECTURE 7
DATE:21/8/2011
TIME: 8-10 PG/E16
TOPIC: 3.0 SHEAR FORCES AND BENDING MOMENTS
3.3.3 Calculate the magnitude for the shear force at the specified points on the simply supported beam and cantilever beam.
3.3.4 Sketch the diagram of shear force for beam in the simply supported beam and cantilever beam
3.3.5 Explain the standard sign for bending moment.
3.3.6 Calculate the magnitude for bending moment at the specified points of simply supported beam and cantilever beam for a given load.










TUTORIAL 7
DATE:25/8/2011
TIME: 10-11PG/BJM3




LECTURE 8
DATE:5/9/2011
TIME: 8-10 PG/E16
TOPIC: 3.0 SHEAR FORCES AND BENDING MOMENTS
3.3.7 Draw diagrams of bending moment for beam on the simply supported beam and cantilever beam
3.3.8 Determine the point of maximum bending moment on bending moment diagram and zero shear force point on the shear force diagram.
3.3.9 Calculate the value of maximum bending moment at the point on beam when shear force is zero.

3.3.10 Relate the point of contraflexure and the point where bending moment change sign.









TUTORIAL 8
DATE: 8/9/2011
TIME: 10-11PG/BJM3



LECTURE 9
DATE:12/9/2011
TIME: 8-10 PG/E16
TOPIC: 4.0 BENDING STRESSES
4.1  Understand the bending stresses
4.1.1  Name the quantity represented by each letter in the general bending formula;
            

4.1.2  Explain the bending stress changes at the section of the beam in bending.
          Formula.
4.1.3  Show by sketch, the meaning of radius of curvature for the beam in bending.






TUTORIAL 9
DATE: 15/9/2011
TIME: 10-11PG/BJM3




LECTURE 10
DATE: 18/9/2011
TIME: 8-10 PG/E16
TOPIC: 4.0 BENDING STRESSES
4.1.4  Calculate the following, for the given standard section:
a. the position of neutral axis, NA
b. second moment of area, I
4.1.5  Use the table of characteristics in standard section.












TUTORIAL 10
DATE: 21/9/2011
TIME: 10-11PG/BJM3


LECTURE 11
DATE: 2/10/2011
TIME: 8-10 PG/E16
TOPIC: 4.0 BENDING STRESSES
4.1.6  Use relation in bending formula to solve problems involving the strength and bending of simply supported beam and cantilever beam.













TUTORIAL 11
DATE: 29/9/2011
TIME: 10-11PG/BJM3



LECTURE 12
DATE: 9/10/2011
TIME: 8-10 PG/E16
TOPIC: 5.0 BEAM DEFLECTION
5.1 Understand beam deflections
5.1.1 Explain Double Integration Method
5.1.2 Define each quantity illustrated in the given formula
                         
State the boundary condition for simply support and cantilever beam.








TUTORIAL 12
DATE: 6/10/2011
TIME: 10-11PG/BJM3




LECTURE 13
DATE: 16/10/2011
TIME: 8-10 PG/E16
TOPIC: 5.0 BEAM DEFLECTION
5.1.4 Determine by using double integration method the deflection and slope at every specify points on simply support and cantilever beam in every loaded situation as below:
a.  Simply support, with concentrated load  at center of the beam.
b.  Simply support with evenly distributed load.











TUTORIAL 13
DATE: 13/10/2011
TIME: 10-11PG/BJM3




LECTURE 14
DATE: 17/10/2011
TIME: 8-10 PG/E16
TOPIC: 5.0 BEAM DEFLECTION
c. Cantilever beam with single concentrated load at edge end of the beam.
d. Cantilever beam with evenly distributed load.
e. Cantilever beam with concentrated load at center of the beam.












TUTORIAL 14
DATE: 20/10/2011
TIME: 10-11PG/BJM3
TOPIC:



LECTURE 15
DATE: 24/10/2011
TIME: 8-10 PG/E16
TOPIC: 6.0 TORSION
6.1 Understand Torsion
6.1.1 Explain the terms represented by each letter in the general equation for the torsion of circular cross-section shafts:
           
6.1.2 Define the polar moment of inertia.
6.1.3 Show by diagram the torsional shear stress changes/varies with the sectional radius for shafts subjected to torque.
6.1.4 Sketch the angle of twist of a shaft subjected to torque.

6.1.5 Calculate the polar moments of inertia for solid shaft, hollow shaft and circular shaft.
6.1.6 Use the table of section characteristic to determine the polar moments of inertia.




TUTORIAL 15
DATE: 27/10/2011
TIME: 10-11PG/BJM3



LECTURE 16
DATE: 31/10/2011
TIME: 8-10 PG/E16
TOPIC: 6.0 TORSION
6.1.7  Use the relationship in general equation to solve problem related to solid shaft or hollow circular shaft subjected to torque.
6.1.8  Use the relationship in 6.1.1 to solve problems on simple parallel and series composite shafts.
6.1.9  Calculate the power transmitted by the shaft using the following formula
             









TUTORIAL 16
DATE: 3/11/2011
TIME: 10-11PG/BJM3